

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 514-519

www.elsevier.com/locate/jorganchem

Homolytic hydrogermylation of alkenes with dibutylchlorogermane

Katsukiyo Miura ^{a,*}, Kazunori Ootsuka ^a, Akira Hosomi ^{b,*}

^a Department of Chemistry, 21st Century COE, Graduate School of Pure and Applied Sciences, University of Tsukuba, and CREST,

Japan Science and Technology Corporation (JST), Tsukuba, Ibaraki 305-8571, Japan

^b Faculty of University Evaluation and Research, National Institution for Academic Degrees and University Evaluation, Kodaira, Tokyo 187-8587, Japan

Received 2 March 2006; received in revised form 25 April 2006; accepted 27 April 2006 Available online 30 August 2006

Abstract

In the presence of Et_3B -dry air, dibutylchlorogermane (Bu₂GeClH) reacted smoothly with alkenes at room temperature to give hydrogermylation products in high yields. This homolytic hydrogermylation was applicable to various alkenes including electron-deficient, electron-rich, and internal alkenes. Under the same conditions, tributylgermane (Bu₃GeH) showed much lower reactivity than Bu₂GeClH. The Et₃B-initiated reaction of 1,6-dienes with Bu₂GeClH gave germylmethylated cyclopentanes. © 2006 Elsevier B.V. All rights reserved.

Keywords: Hydrogermane; Hydrogermylation; Alkenes; Radical reactions

1. Introduction

Hydrometalation reactions of alkenes with hydrosilanes, -germanes, and -stannanes provide powerful tools for the synthesis of alkylsilanes, -germanes, and -stannanes, respectively [1–3]. Radical initiators and transition metal catalysts are well known to be effective in acceleration of these hydrometalations. The propagation mechanism of the radical-initiated hydrometalations involves reversible addition of a metal radical and hydrogen abstraction of the resultant alkyl radical from a metal hydride (Scheme 1). The radical process is applicable to various alkenes due to high reactivity of the radical species as well as high compatibility with polar functionalities. However, there are some drawbacks such as severe reaction conditions, low reaction efficiency caused by side radical reactions, and low stereoselectivity, particularly, in the reactions using trialkylmetal hydrides (R_3MH , R = alkyl, M = Si, Ge, Sn). Judging from the reaction mechanism, an efficient homolytic hydrometalation under mild conditions can be achieved by low reversibility of the radical addition step and fast hydrogen abstraction of the alkyl radical intermediate. A few kinds of group 14 metal hydrides are known to satisfy these requirements in hydrometalations of both unactivated and activated alkenes. For example, tris(trimethylsilyl)silane ((Me₃Si)₃SiH) [4], tri(2-furyl)germane ((2furyl)₃GeH) [5], and dialkylhalostannanes (R₂SnXH) [6] are valuable for efficient, mild homolytic hydrometalations of a wide range of alkenes.

In the course of our studies on highly selective homolytic hydrostannylations of alkenes and alkynes with Lewis acidic hydrostannanes [7], we found that dibutylchlorostannane (Bu₂SnClH) added exclusively to 1-undecen-3-ol in the coexistence of 1-octene (Eq. (1)) [7a]. The high chemoselectivity is attributable to the coordination of the hydroxy group to the Lewis acidic tin nucleus in the β-stannylalkyl radical intermediate (Scheme 2). The Sn-O coordination would retard the decomposition (inverse reaction) of the intermediate to Bu₂ClSn and the substrate to promote the hydrostannylation process. This chemoselective hydrostannylation with Bu₂SnClH induced us to investigate the reactivity of dibutylchlorogermane (Bu₂GeClH, 1a), a Lewis acidic hydrogermane, toward homolytic hydrogermylation of alkenes [8]. Herein we describe that 1a adds smoothly to a variety of alkenes in the presence of Et₃B-dry air.

^{*} Corresponding authors. Tel.: +81 29 853 4486; fax: +81 29 853 6503 (K. Miura); fax: +81 42 353 1805 (A. Hosomi).

E-mail addresses: miura@chem.tsukuba.ac.jp (K. Miura), hosomi@ chem.tsukuba.ac.jp (A. Hosomi).

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2006.04.043

trace

2.1. Synthesis of dibutylchlorogermane (1a)

Hydrogermane **1a** was prepared from GeCl₄ by four steps without difficulty (Scheme 3) [9]: butylation of GeCl₄ with BuMgBr, dealkylative dichlorination of Bu₄Ge with AcCl and AlCl₃, reduction of Bu₂GeCl₂ with LiAlH₄, and chlorination of Bu₂GeH₂ with CuCl₂ [10].

44%

2.2. Optimization of reaction conditions using 2-propen-1-ol (2a)

We first examined the radical-initiated hydrogermylation of 2-propen-1-ol (2a) with 1a under various conditions

Table 1

Hydrogermylation of allyl alcohol 2a with $1a^a$

0-

		Ja			
Entry	Solvent	Time	Isolated yield (%)		
1 ^b	THF	5 min	99		
2	Hexane	10 h	96		
3	Toluene	3 h	90		
4 ^b	Neat ^c	5 min	97		
5 ^d	Neat ^c	24 h	0		
6 ^e	THF	1 h	0		
7 ^f	THF	24 h	37		
8 ^g	THF	24 h	0		

^a Unless otherwise noted, all reactions were carried out with **2a** (0.50 mmol), **1a** (0.60 mmol), Et₃B (1 M in hexane, 0.025 mmol), dry air (2.5 mL), and solvent (1.0 mL). The mixture was stirred for 10 min at 0 °C and then warmed to rt. The resultant mixture was treated with BuMgBr/Et₂O (1.5 mmol) in entries 1, 4, and 5 or BuLi/hexane (1.2 mmol) in entries 2, 3, and 6.

^b The reaction was carried out at 0 °C.

 $^{\rm c}$ The reaction mixture contained a small amount of hexane coming from 1 M solution of Et_3B.

^d Without Et₃B-dry air.

e With galvinoxyl (0.025 mmol).

^f Bu₂Ge(OEt)H (1b) was used instead of Bu₂GeClH.

^g Bu₃GeH (1c) was used instead of Bu₂GeClH.

(Table 1). In the presence of Et₃B-dry air as radical initiator [11], the reaction of 2a with 1a in THF at 0 °C reached completion within 5 min. Treatment of the resultant mixture with BuMgBr gave 3-tributylgermyl-1-propanol (3a) in a quantitative yield after purification by silica gel column chromatography (entry 1) [12]. Use of hexane and toluene as solvent decreased the reaction rate, although prolonged reaction achieved high yields of **3a** (entries 2 and 3). Without solvent, the hydrogermylation proceeded rapidly and efficiently (entry 4). Hydrogermane 1a did not add to 2a in the absence of Et₃B-dry air (entry 5). Addition of galvinoxyl suppressed the Et₃B-initiated reaction completely (entry 6). The results of entries 5 and 6 clearly indicate that the present hydrogermylation involves a radical chain mechanism. The reaction with dibutyl(ethoxy)germane (Bu₂Ge(OEt)H, 1b) was much slower than that with 1a (entries 1 and 7) [8]. Tributylgermane (Bu₃GeH, 1c) was insensitive to 2a even in the presence of Et₃B-dry air (entry 8). Thus, introduction of a chloro group on the germanium atom is very effective in improving the reactivity of hydrogermanes [8].

2.3. Hydrogermylation of various alkenes

The Et_3B -initiated hydrogermylation with **1a** is applicable to various alkenes as shown in Table 2. 1-Undecen-3-ol (**2b**) and 2-methyl-2-propen-1-ol (**2c**) as well as **2a** underwent the hydrogermylation efficiently (entries 1–3).

, ,	$R^{1} \xrightarrow{R^{2}} R^{3} + 1a \xrightarrow{\text{cat. Et}_{3}B-\text{air}} 0 \text{ °C to rt} \xrightarrow{R^{1}} R^{2} \xrightarrow{\text{GeBu}_{3}} R^{1} \xrightarrow{\text{GeBu}_{3}} R^{3}$							
Entry	R^1	R^2	R^3		Time	BuM (equiv)	Isolated yield (%)	
1 ^b	HOCH ₂	Н	Н	2a	5 min	BuMgBr (3)	99	
2	<i>n</i> -C ₈ H ₁₇ CH(OH)	Н	Н	2b	30 min	BuLi (2.4)	94	
3	HOCH ₂	Me	Н	2c	30 min	BuMgBr (3)	99	
4	$n - C_9 H_{19}$	Н	Н	2d	30 min	BuLi (1.2)	97	
5	BuO	Н	Н	2e	30 min	BuLi (1.2)	82	
6	CyO_2C	Н	Н	2f	30 min	BuMgBr (1.2)	59	
7°	CyO ₂ C	Н	Н	2f	10 h	BuMgBr (1.2)	86	
8°	MeO ₂ C	Н	Н	2g	10 h	BuMgBr (1.2)	82	
9 ^d	Pr	Н	Pr	2h	1 h	BuLi (1.3)	92	
10 ^d	Me ₃ SiO	$(CH_2)_4$	$(CH_2)_4$	2i	1 h	BuLi (1.3)	80	

Table 2 Hydrogermylation of alkenes **2** with $1a^{a}$

^a Unless otherwise noted, all reactions were carried out with an alkene 2 (0.50 mmol), 1a (0.60 mmol), Et_3B (1 M in hexane, 0.025 mmol), and dry air (2.5 mL) in THF (1.0 mL). The mixture was stirred for 10 min at 0 °C and then warmed to rt. The resultant mixture was treated with BuMgBr/Et₂O or BuLi/hexane.

^b The reaction was carried out at 0 °C.

^c Instead of THF, hexane was used as solvent.

^d The reaction was carried out without solvent, although a small amount of hexane coming from 1 M solution of Et₃B was contained.

Hydrogermane 1a reacted smoothly with 1-undecene (2d), a non-functionalized alkene, to give the corresponding hydrogermylation product in 97% yield (entry 4). Under the same conditions, 1a was reactive also to vinyl ether 2e, an electron-rich alkene (entry 5). Use of electron-deficient alkene 2f resulted in a low yield of the corresponding adduct 3f (entry 6). The hydrogermylation of 2f was not completed, and elongation of the reaction time was not effective in further consumption of 2f. However, prolonged hydrogermylation of 2f and methyl acrylate (2g) in hexane achieved high efficiency (entries 7 and 8). To our surprise, the present method using 1a succeeded in efficient hydrogermylation of internal alkenes such as (E)-4-octene (2h) and 1-(trimethylsiloxy)cyclohexene (2i) under solvent-free conditions (entries 9 and 10) [13]. In THF, 1a did not add to these alkenes at all.

To disclose the chemoselectivity of the present hydrogermylation, we performed competitive reaction of **2b** and **2d** with **1a** (**2b**:**2d**:**1a** = 1:1:1.1, Eq. (2)). Hexane, a non-coordinating solvent, was used in view of the ease of coordination between the hydroxy group and the germanium center. However, the hydrogermylation gave a mixture of **3b** and **3d** with low chemoselectivity. This observation stands in sharp contrast with the previous result shown in Eq. (1). The difference between **1a** and Bu₂SnClH in chemoselectivity may arise from high bond energy of carbon–germanium bond [14], which decelerates the elimination of Bu₂ClGe^c from the β -germylalkyl radical intermediates **4** to facilitate the radical chain process irrespective of the presence of the hydroxy group (Scheme 4).

$$2b + 2d \xrightarrow{1) 1a (1.1 equiv)}_{\begin{array}{c} Et_3B-air (0.05 equiv) \\ hexane, rt, 5 h \end{array}} 3b + 3d (2)$$

We next tried radical cyclization of dienes with 1a. Use of 1,6-heptadiene (5a) afforded the cyclized product 6a in good yield with moderate *cis*-selectivity (Scheme 5). Introduction of methoxymethyl groups slightly improved the yield and the stereoselectivity. This radical cyclization proceeds via radical intermediate 7. The observed *cis*-selectivity can be

rationalized by cyclization through chair-equatorial conformation A of 7, which is energetically more favored than boat-equatorial and chair-axial conformations, B and C, leading to *trans*-6 [15].

Previously we have reported that 1a acts as a good radical reducing agent and has higher hydrogen-donating ability to an alkyl radical than 1b and 1c [8]. Judging from this observation, the high reactivity of 1a toward homolytic hydrogermylation is attributable to its high hydrogendonating ability, which promotes the latter step of the propagation process (Schemes 1 and 4). Additionally, in the hydrogermylation of unactivated and electron-rich alkenes, the relatively electrophilic character of Bu₂ClGe⁻ would facilitate its addition to these alkenes.

3. Conclusion

We have demonstrated that Bu₂GeClH (1a) acts as an efficient hydrogermylating agent. With this reagent, a variety of alkenes can be converted into the corresponding alkylgermanes in good to high yields. The present study has disclosed also that a proper change of the substituent on germanium makes hydrogermanes synthetically more useful.

4. Experimental

Unless otherwise noted, all reactions and distillations were carried out under N₂. Solvents were dried by distillation from sodium metal/benzophenone ketyl (THF, Et₂O, toluene) and CaH₂ (hexane). All other commercially obtained reagents were used as received. Infrared spectra were measured on a JASCO FT/IR-230 spectrophotometer. ¹H NMR spectra at 270 MHz and ¹³C NMR spectra at 67.7 MHz were recorded on a JEOL JNM-EX-270 spectrometer. The chemical shifts (δ) are reported with reference at 0.00 ppm (Me₄Si) or 7.26 ppm (CHCl₃) for the proton and at 77.00 ppm (centered on the signal of CDCl₃) for the carbon. Mass spectra were measured (by EI method) on a Shimadzu GCMS-QP5050 instrument. Elemental analyses were performed by the Analysis Center of the University of Tsukuba.

4.1. Synthesis of dibutylchlorogermane

As shown in Scheme 3, the title compound was prepared from tetrachlorogermane by four steps. See the references for the steps from tetrachlorogermane to dibutylgermane [9]. The last step, chlorination of dibutylgermane, was performed by the method reported by Kunai and co-workers [10] as follows: under a nitrogen atmosphere, dibutylgermane (12.5 g, 66.2 mmol) was added to a mixture of CuCl₂ (19.5 g, 145 mmol), CuI (0.42 g, 2.2 mmol), and Et₂O (260 mL) at 0 °C. After being stirred for an hour, the reaction mixture was warmed to room temperature and stirred for 3 h. The resultant mixture was filtered through celite[®]. After evaporation of the filtrate, the residual oil was diluted with dry pentane (50 mL) again, filtered through celite[®]. and evaporated. Purification of the crude product by distillation gave the title compound (13.6 g, 60.9 mmol) in 92% yield. Bp 114 °C (2.3 Torr). IR (neat) 2958, 2929, 2860, 2058, 1464 cm⁻¹; ¹H NMR (C₆D₆) δ 0.85 (t, J = 7.3 Hz, 6H), 0.91–1.10 (m, 4H), 1.81–1.31 (m, 4H), 1.37–1.48 (m, 4H), 5.50 (tt, J = 2.7, 1.9 Hz, 1H); ¹³C NMR (C₆D₆) δ 13.73 (CH₃×2), 18.67 (CH₂×2), 25.58 (CH₂×2), 26.79 (CH₂×2); MS m/z (relative intensity) 224 (M⁺, 1.3), 222 (M⁺ – 2, 1.5), 220 (M⁺ – 4, 1.3), 57 (100). Anal. Calc. for C₈H₁₉GeCl: C, 43.03; H, 8.59. Found: C, 42.90; H, 8.45%.

4.2. *Et*₃*B*-*Initiated hydrogermylation of alkenes followed by butylation*

Under a nitrogen atmosphere, Et_3B (1.0 M in hexane, 0.025 mL, 0.025 mmol) and dry air (2.5 mL) were added to a solution of Bu_2GeCIH (1a, 134 mg, 0.60 mmol) and allyl alcohol 2a (30 mg, 0.50 mmol) in THF (1 mL) at 0 °C. After being stirred for 5 min, the resultant mixture was treated with BuLi (1.60 M in hexane, 0.93 mL, 1.5 mmol) and stirred for 10 min. The mixture was poured into saturated aqueous NH₄Cl (10 mL). The extract with *t*-BuOMe (3 × 10 mL) was dried over Na₂SO₄ and evaporated. Purification of the crude product by silica gel column chromatography gave 3-tributylgermyl-1-propanol (3a, 150 mg, 0.495 mmol) in 99% yield.

4.2.1. 3-Tributylgermyl-1-propanol (3a)

Bp 150 °C (0.45 Torr, bath temp.). IR (neat) 3323 (br s, OH), 2956, 2923, 1463, 1053 cm⁻¹; ¹H NMR (CDCl₃) δ 0.64–0.74 (m, 8H), 0.88 (t, J = 7.0 Hz, 9H), 1.25–1.37 (m, 12H), 1.54–1.66 (m, 3H), 3.59 (t, J = 6.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 8.15 (CH₂), 12.40 (CH₂×3), 13.76 (CH₃×3), 26.61 (CH₂×3), 27.45 (CH₂×3), 28.48 (CH₂), 65.94 (CH₂); MS *m*/*z* (relative intensity) 247 (M⁺ – Bu, 100), 245 (M⁺ – 2 – Bu, 78), 243 (M⁺ – 4 – Bu, 56); Anal. Calc. for C₁₅H₃₄GeO: C, 59.45; H, 11.31. Found: C, 59.76; H, 11.02%.

4.2.2. 1-Tributylgermyl-3-undecanol (3b)

IR (neat) 3354 (br s, OH), 2956, 2924, 2854, 1464 cm⁻¹; ¹H NMR (CDCl₃) δ 0.60–0.80 (m, 8H), 0.89 (t, J = 6.8 Hz, 12H), 1.28–1.54 (m, 29H), 3.44–3.54 (m, 1H); ¹³C NMR (CDCl₃) δ 7.90 (CH₂), 12.33 (CH₂×3), 13.73 (CH₃×3), 14.06 (CH₃), 22.65 (CH₂), 25.69 (CH₂), 26.60 (CH₂×3), 27.44 (CH₂×3), 29.27 (CH₂), 29.60 (CH₂), 29.74 (CH₂), 31.87 (CH₂), 32.70 (CH₂), 36.61 (CH₂), 74.31 (CH); MS m/z (relative intensity) 359 (M⁺ – Bu, 24), 357 (M⁺ – 2 – Bu, 30), 355 (M⁺ – 4 – Bu, 21), 205 (100). Anal. Calc. for C₂₃H₅₀GeO: C, 66.52; H, 12.14. Found: C, 66.29; H, 12.17%.

4.2.3. 2-Methyl-3-tributylgermyl-1-propanol (3c)

IR (neat) 3327 (br s, OH), 2956, 2924, 1464, 1030 cm⁻¹; ¹H NMR (CDCl₃) δ 0.52 (dd, J = 13.8, 9.6 Hz, 1H), 0.70– 0.76 (m, 6H), 0.82 (dd, J = 13.8, 4.8 Hz, 1H), 0.89 (t, $J = 7.0 \text{ Hz}, 9\text{H}, 0.95 \text{ (d, } J = 6.6 \text{ Hz}, 3\text{H}, 1.28-1.35 \text{ (m, } 12\text{H}), 1.53 \text{ (br s, } 1\text{H}), 1.71-1.83 \text{ (m, } 1\text{H}), 3.35 \text{ (dd, } J = 10.3, 6.9 \text{ Hz}, 1\text{H}), 3.44 \text{ (dd, } J = 10.3, 5.6 \text{ Hz}, 1\text{H}); ^{13}\text{C} \text{ NMR} (\text{CDCl}_3) \delta 13.20 (\text{CH}_2 \times 3), 13.75 (\text{CH}_3 \times 3), 16.86 (\text{CH}_2), 19.46 (\text{CH}_3), 26.65 (\text{CH}_2 \times 3), 27.44 (\text{CH}_2 \times 3), 33.17 (\text{CH}), 70.79 (\text{CH}_2). \text{ Anal. Calc. for } C_{16}\text{H}_{36}\text{GeO: C, } 60.61; \text{ H, } 11.44. \text{ Found: C, } 60.31; \text{ H, } 11.37\%.$

4.2.4. 1-(Tributylgermyl)undecane (3d)

Bp 180 °C (1.3 Torr, bath temp.). IR (neat) 2956, 2924, 2854, 1464 cm⁻¹; ¹H NMR (CDCl₃) δ 0.65–0.71 (m, 8H), 0.86–0.94 (m, 12H), 1.12–1.52 (m, 30H); ¹³C NMR (CDCl₃) δ 11.86 (CH₂), 12.49 (CH₂×3), 13.79 (CH₃×3), 14.12 (CH₃), 22.71 (CH₂), 25.23 (CH₂), 26.67 (CH₂×3), 27.54 (CH₂×3), 29.32 (CH₂), 29.38 (CH₂), 29.67 (CH₂), 29.68 (CH₂), 29.74 (CH₂), 31.95 (CH₂), 33.71 (CH₂); MS *m/z* (relative intensity) 343 (M⁺ – Bu, 33), 341 (M⁺ – 2 – Bu, 21), 339 (M⁺ – 4 – Bu, 17), 57 (100). Anal. Calc. for C₂₃H₅₀Ge: C, 69.19; H, 12.62. Found: C, 69.29; H, 12.71%.

4.2.5. 1-Butoxy-2-(tributylgermyl)ethane (3e)

Bp 130 °C (2 Torr, bath temp.). IR (neat) 2956, 2925, 2854, 1107 cm⁻¹; ¹H NMR (CDCl₃) δ 0.68–0.74 (m, 6 H), 0.85–0.94 (m, 12H), 1.05–1.12 (m, 2H), 1.28–1.44 (m, 14H), 1.50–1.60 (m, 2H), 3.39 (t, J = 6.6 Hz, 2H), 3.45–3.51 (m, 2 H); ¹³C NMR (CDCl₃) δ 12.67 (CH₂×3), 13.74 (CH₃×3), 13.94 (CH₃), 14.21 (CH₂), 19.46 (CH₂), 26.56 (CH₂×3), 27.41 (CH₂×3), 32.03 (CH₂), 68.65 (CH₂), 70.07 (CH₂); MS m/z (relative intensity) 289 (M⁺ – Bu, 13), 287 (M⁺ – 2 – Bu, 9.5), 285 (M⁺ – 4 – Bu, 6.9), 261 (100). Anal. Calc. for C₁₈H₄₀GeO: C, 62.64; H, 11.68. Found: C, 62.52; H, 11.76%.

4.2.6. Cyclohexyl 3-(tributylgermyl)propanoate (3f)

Bp 230 °C (1 Torr, bath temp.). IR (neat) 2927, 2858, 1732 (C=O), 1454, 1200 cm⁻¹; ¹H NMR (CDCl₃) δ 0.69–0.75 (m, 6H), 0.89 (t, J = 7.0 Hz, 9H), 0.96–1.02 (m, 2H), 1.23–1.50 (m, 18H), 1.69–1.90 (m, 4H), 2.26–2.32 (m, 2H), 4.71–4.78 (m, 1H); ¹³C NMR (CDCl₃) δ 7.71 (CH₂), 12.25 (CH₂×3), 13.72 (CH₃×3), 23.79 (CH₂×2), 25.41 (CH₂), 26.57 (CH₂×3), 27.35 (CH₂×3), 30.47 (CH₂), 31.66 (CH₂×2), 72.43 (CH), 174.66 (C); MS *m*/*z* (relative intensity) 261 (M⁺ – Bu –C₆H₁₀, 54), 259 (M⁺ – 2 – Bu – C₆H₁₀, 44), 257 (M⁺ – 4 – Bu – C₆H₁₀, 32). Anal. Calc. for C₂₁H₄₂GeO₂: C, 63.19; H, 10.61. Found: C, 63.18; H, 10.76%.

4.2.7. Methyl 3-(tributylgermyl)propanoate (3g)

Bp 130 °C (2 Torr, bath temp.). IR (neat) 2956, 2923, 2856, 1741 (C=O), 1464, 1205 cm⁻¹; ¹H NMR (CDCl₃) δ 0.68–0.76 (m, 6H), 0.89 (t, J = 6.8 Hz, 9H), 0.97–1.04 (m, 2H), 1.32 (br s, 12H), 2.32–2.49 (m, 2H), 3.67 (s, 3H); ¹³C NMR (CDCl₃) δ 7.68 (CH₂), 12.22 (CH₂×3), 13.72 (CH₃×3), 26.56 (CH₂×3), 27.33 (CH₂×3), 29.92 (CH₂), 51.54 (CH₃), 175.62 (C); MS m/z (relative intensity) 275 (M⁺ – Bu, 100), 273 (M⁺ – 2 – Bu, 78), 271 (M⁺ – 4 –

Bu, 44). Anal. Calc. for $C_{16}H_{34}GeO_2$: C, 58.05; H, 10.35. Found: C, 58.10; H, 10.39%.

4.2.8. 4-(Tributylgermyl)octane (3h)

Bp 200 °C (1 Torr, bath temp.). IR (neat) 2956, 2924, 2856, 1464 cm⁻¹; ¹H NMR (CDCl₃) δ 0.67–0.73 (m, 6H), 0.85–0.91 (m, 15H), 0.97–1.06 (m, 1H), 1.20–1.42 (m, 22H); ¹³C NMR (CDCl₃) δ 12.16 (CH₂×3), 13.76 (CH₃×3), 14.12 (CH₃), 14.48 (CH₃), 22.22 (CH₂), 23.08 (CH₂), 25.67 (CH), 26.85(CH₂×3), 27.67 (CH₂×3), 30.71 (CH₂), 31.41 (CH₂), 33.51 (CH₂); MS *m/z* (relative intensity) 301 (M⁺ – Bu, 5.4), 299 (M⁺ – Bu – 2, 4.0), 297 (M⁺ – Bu – 4, 2.9), 189 (100). Anal. Calc. for C₂₀H₄₄Ge: C, 67.25; H, 12.42. Found: C, 67.16; H, 12.79%.

4.2.9. 1-Tributylgermyl-2-(trimethylsiloxy)cyclohexane (**3i**, single isomer)

Bp 230 °C (1 Torr, bath temp.). IR (neat) 2956, 2925, 2871, 1738, 1252 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 9H), 0.65–0.75 (m, 6H), 0.89 (t, J = 6.9 Hz, 9H), 1.13–1.81 (m, 21H), 4.03–4.06 (m, 1H); ¹³C NMR (CDCl₃) δ 0.68 (CH₃×3), 12.13 (CH₂×3), 13.80 (CH₃×3), 20.94 (CH₂), 23.78 (CH₂), 26.93 (CH₂×3), 27.64 (CH₂), 27.71 (CH₂×3), 33.28 (CH), 35.05 (CH₂), 70.31 (CH); MS *m/z* (relative intensity) 277 (M⁺ – Bu – C₆H₁₀, 47), 275 (M⁺ – 2 – Bu – C₆H₁₀, 32), 273 (M⁺ – 4 – Bu – C₆H₁₀, 25), 73 (100). Anal. Calc. for C₂₁H₄₆GeOSi: C, 60.74; H, 11.16. Found: C, 60.68; H, 11.10%.

4.2.10. 1-Methyl-2-(tributylgermylmethyl)cyclopentane (*6a*, *cis:trans* = 3:1)

Bp 220 °C (1 Torr, bath temp.). IR (neat) 2954, 2924, 2870, 1462 cm⁻¹; ¹H NMR (CDCl₃) δ 0.62–0.95 (m, 20H) including 0.80 (d, J = 9.2 Hz), 0.88 (t, J = 7.0 Hz), and 0.94 (d, J = 6.1 Hz), 1.01–1.36 (m, 16H), 1.45–1.95 (m, 4H): ¹³C NMR (CDCl₃) for the major isomer δ 13.09 $(CH_3 \times 3)$, 13.51 (CH_2) , 13.80 $(CH_2 \times 3)$, 14.85 (CH_3) , 22.63 (CH₂), 26.77 (CH₂ \times 3), 27.57 (CH₂ \times 3), 32.33 (CH₂), 33.07 (CH₂), 38.39 (CH), 40.25 (CH), for the minor isomer δ 13.13 (CH₃×3), 13.80 (CH₂×3), 17.59 (CH₂), 18.72 (CH₃), 23.13 (CH₂), 26.77 (CH₂ \times 3), 27.57 (CH₂×3), 34.22 (CH₂), 34.92 (CH₂), 44.38 (CH), 45.09 (CH); MS m/z (relative intensity) for the major isomer 285 (M^+ – Bu, 23), 283 (M^+ – Bu – 2, 15), 281 (M^+ – Bu -4, 14), 55 (100), for the minor isomer 285 (M⁺ – Bu, 17), 283 (M^+ – Bu – 2, 10), 281 (M^+ – Bu – 4, 12), 55 (100). Anal. Calc. for C₁₉H₄₀Ge: C, 66.89; H, 11.82. Found: C, 66.59; H, 11.90%.

4.2.11. 1,1-Bis(methoxymethyl)-3-methyl-4-

(tributylgermylmethyl)cyclopentane (**6b**, cis:trans = 4:1)

Bp 250 °C (1 Torr, bath temp.). IR (neat) 2954, 2924, 2871, 1458, 1113 cm⁻¹; ¹H NMR (CDCl₃) δ 0.35–0.95 (m, 20H), 1.15–1.34 (m, 14H), 1.53–1.78 (m, 2.4H), 1.89–2.08 (m, 1.6H), 3.17 (s, 2.4H), 3.24 (br s, 1.6H), 3.33 (s, 6H); ¹³C NMR (CDCl₃) for the major isomer δ 13.00 (CH₂×3), 13.41 (CH₂), 13.76 (CH₃×3), 15.81 (CH₃),

26.68 (CH₂×3), 27.49 (CH₂×3), 37.79 (CH), 39.09 (CH), 39.28 (CH₂), 39.79 (CH₂), 46.33 (C), 59.16 (CH₃×2), 77.46 (CH₂), 78.79 (CH₂), for the minor isomer δ 13.07 (CH₂×3), 13.76 (CH₃×3), 16.51 (CH₂), 17.78 (CH₃), 26.68 (CH₂×3), 27.49 (CH₂×3), 41.34 (CH₂), 41.94 (CH₂), 43.16 (CH), 43.97 (CH), 45.06 (C), 59.16 (CH₃×2), 78.05 (CH₂×2); MS *m*/*z* (relative intensity) for the major isomer 373 (M⁺ – Bu, 59), 371 (M⁺ – Bu – 2, 48), 369 (M⁺ – Bu – 4, 37), 45 (100), for the minor isomer 373 (M⁺ – Bu, 36), 371 (M⁺ – Bu – 2, 25), 369 (M⁺ – Bu – 4, 20), 45 (100). Anal. Calc. for C₂₃H₄₈GeO₂: C, 64.36; H, 11.27. Found: C, 64.54; H, 11.27%.

4.3. Competitive reaction of alkenes 2b and 2d

Under a nitrogen atmosphere, Et_3B (1.0 M in hexane, 0.025 mL, 0.025 mmol) and dry air (2.5 mL) were added to a solution of 1-undecen-3-ol (**2b**, 86 mg, 0.51 mmol), 1undecene (**2d**, 76 mg, 0.49 mmol) and Bu₂GeClH (**1a**, 129 mg, 0.58 mmol) in hexane (1 mL) at 0 °C. After being stirred for 5 min, the resultant mixture was warmed to room temperature and stirred for 5 h. After then, the mixture was treated with BuLi (1.60 M in hexane, 0.75 mL, 1.2 mmol) and stirred for 10 min. The mixture was poured into saturated aqueous NH₄Cl (10 mL). The extract with *t*-BuOMe (3 × 10 mL) was dried over Na₂SO₄ and evaporated. Purification of the crude product by silica gel column chromatography gave 1-tributylgermyl-3-undecanol (**3b**, 54 mg, 0.13 mmol, 26%) and 1-(tributylgermyl)undecane (**3d**, 87 mg, 0.22 mmol, 44%).

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan.

References

 (a) G. Wilkinson, G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry I, vol. 2, Pergamon, Oxford, 1982 (Chapters 9.1, 10, and 11);

(b) G. Wilkinson, G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry II, vol. 2, Pergamon, Oxford, 1995 (Chapters 1, 5, and 6).

- [2] (a) J. Pietruszka, in: I. Fleming (Ed.), Science of Synthesis, vol. 4, Thieme, Stuttgart, Germany, 2001, p. 159 (Chapter 4.4.4);
 (b) K. Oshima, in: M. Moloney (Ed.), Science of Synthesis, vol. 5, Thieme, Stuttgart, Germany, 2002, p. 9 (Chapter 5.1.1);
 (c) A.J. Clark, in: M. Moloney (Ed.), Science of Synthesis, vol. 5, Thieme, Stuttgart, Germany, 2002, p. 205 (Chapter 5.2.1).
- [3] (a) M.A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley Interscience, New York, 2000, p. 401;
 (b) A.G. Davies, Organotin Chemistry, Wiley-VCH, Weinheim, 2004, p. 54.
- [4] (a) B. Kopping, C. Chatgilialoglu, M. Zehnder, B. Giese, J. Org. Chem. 57 (1992) 3994;
 (b) C. Chatgilialoglu, Acc. Chem. Res. 25 (1992) 188;
 (c) A related work:C. Chatgilialoglu, M. Guerra, A. Guerrini, G. Seconi, J. Org. Chem. 57 (1992) 2427.
- [5] (a) S. Tanaka, T. Nakamura, H. Yorimitsu, H. Shinokubo, K. Oshima, Org. Lett. 2 (2000) 1991;
 (b) T. Nakamura, S. Tanaka, H. Yorimitsu, H. Shinokubo, K. Oshima, C.R. Acad. Sci. Paris, Chimie 4 (2001) 461.
- [6] W.P. Neumann, J. Pedain, Tetrahedron Lett. (1964) 2461.
- [7] (a) K. Miura, H. Saito, S. Uchinokura, A. Hosomi, Chem. Lett. (1999) 659;
 (b) K. Miura, D. Wang, Y. Matsumoto, N. Fujisawa, A. Hosomi, J.
 - Org. Chem. 68 (2003) 8730:
 - (c) K. Miura, D. Wang, Y. Matsumoto, A. Hosomi, Org. Lett. 7 (2005) 503;
 - (d) K. Miura, D. Wang, A. Hosomi, Synlett (2005) 406;
- (e) K. Miura, D. Wang, A. Hosomi, J. Am. Chem. Soc. 127 (2005) 9366.
- [8] For radical reduction and addition of haloalkanes using 1a and 1b, see: K. Miura, K. Ootsuka, A. Hosomi, Synlett (2005) 3151.
- [9] (a) J. Satge, Ann. Chim. 6 (1961) 519;
 (b) K. Mochida, I. Miyagawa, Bull. Chem. Soc. Jpn. 56 (1983) 1875.
- [10] For the last step, see: J. Ohshita, Y. Toyoshima, A. Iwata, H. Tang, A. Kunai, Chem. Lett. (2001) 886.
- [11] It is known that Et_3B -dry air effectively initiates homolytic hydrogermylation and hydrostannylation under mild conditions. See Ref. [5] and references therein. For this reason, we selected Et_3B -dry air as radical initiator.
- [12] The butylation was performed only for the ease of isolation and characterization of the hydrogermylation products in the atmosphere.
- [13] The successful addition to less reactive internal alkenes under solventfree conditions seems only due to rate-acceleration of the intermolecular reaction by increased concentration of the reactants.
- [14] Bond dissociation enthalpies of C–M bond in Me₄M are *ca.* 340 (M = Ge) and 300 (M = Sn) kJ/mol J.A.M. Simões, J.F. Liebman, S.W. Sladen, in: S. Patai (Ed.), The Chemistry of Organic Germanium, Tin, and Lead Compounds, Wiley, Chichester, 1995, p. 245 (Chapter 4).
- [15] D.P. Curran, N.A. Porter, B. Giese, Stereochemistry of Radical Reactions, VCH, Weinheim, 1995, p. 38.